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Abstract

A modified procedure for calculating the thermal diffusivity of solids based on temperature measurements at two points and the semi-
infinite boundary condition is presented. The method makes use of a solution to the unsteady one-dimensional inverse heat conduction
problem for the semi-infinite solid. The procedure gives accurate results based on temperature changes produced by an arbitrary fluc-
tuating heat flux source at the boundary.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Thermal diffusivity measurement; Inverse solution
1. Introduction

Many creative and innovative methods are available for
determining thermal diffusivity of solids. These range from
Kelvin’s approach to determine the effective thermal diffu-
sivity of soil based on 24 h periodic application of sunlight
[1] to modern sophisticated methods using laser pulses and
infrared detectors to measure the time for the peak in a ther-
mal wave to pass through a thin sample [2]. For numerous
applications of practical interest, even a rudimentary heat-
ing device and a set of temperature sensors may be sufficient
to obtain useful thermal property data. Recently, Monde
and Mitsutake [3] proposed a method for determining the
thermal diffusivity of solids using an analytical inverse solu-
tion for unsteady heat conduction based on measurements
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.08.031

* Corresponding author. Address: Department of Mechanical Engineer-
ing, Saga University, 1 Honjo-machi, Saga 840-8502, Japan. Tel.: +81 952
28 8608; fax: +81 952 28 8587.

E-mail addresses: peter@me.saga-u.ac.jp (P.L. Woodfield), monde@
me.saga-u.ac.jp (M. Monde), mitutake@me.saga-u.ac.jp (Y. Mitsutake).

1 Tel.: +81 952 26 3870; fax: +81 952 28 8595.
2 Tel.: +81 952 28 8616; fax: +81 952 28 8587.
at two points within the solid and the semi-infinite bound-
ary condition. The merit of their method was independence
of the solution to the boundary heat flux used to produce
the temperature change in the solid. They demonstrated
accurate predictions of thermal diffusivity for quite different
surface boundary conditions provided temperature changes
occurred reasonably smoothly. In this communication we
show that their procedure can become robust to a more
arbitrarily fluctuating boundary condition if the techniques
for improving practical application of the inverse solution
proposed by Woodfield et al. [4] are incorporated in the
method. This has the advantage that even a poorly con-
trolled external boundary condition, could be used to deter-
mine accurately the diffusivity of a thermally thick solid
with two sensors inserted in the interior.
2. Formulation

Eqs. (1a)–(1d) define the problem of interest. The for-
mulation is very similar to that in [3] except that Eq. (1d)
contains the additional correction terms (j = 1,Ncorr) pro-
posed in [4]. Eq. (1d) is the point where the thermocouple
measurements enter the problem. Notice that the sensor
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Nomenclature

a thermal diffusivity
C1 coefficient relating to size of data correction

windows
C2 Fourier number relating to how much future

data included in curve fit
F(a) function to be minimized to obtain a

Gj,k coefficient defined by Eq. (5)
L thickness of sample
Pj,k coefficient determined by least-squares method

for data fit

s laplace transform variable
t time
T temperature
Wj,k coefficient defined by Eq. (9)
z depth from the surface
z1 position of first sensor
z2 position of second sensor
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is at a position z = zn and no reference is made to the
boundary condition at z = 0. The basic concept is to solve
Eq. (1) for two different sets of measurements, one taken at
z = z1 and the other at z = z2. The thermal diffusivity, a, is
then chosen by a least-squares method so that the two
answers agree over the time range of the measured data.
As pointed out in [4], Eq. (1c) is valid to better than 1%
accuracy provided at/L2 < 0.1 where L is the thickness of
the sample.
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It is important that Eq. (1d) accurately approximates the
measurements. As in [4], the coefficients Pj,k for Eq. (1d)
are determined by the linear least squares method over
the whole data range for j = 0 and then corrections to
the fit are made over successively smaller windows of data
for j = 1, Ncorr. The range of data (tj to tf) corresponding to
the jth correction term in Eq. (1d) is determined according
to Eqs. (2) and (3) where C1 = 0.7, C2 = 0.8 and t is the
time at which the surface temperature is evaluated.

tj ¼ tf � C1ðtf � tj�1Þ ð2Þ
aðtf � tÞ=z2
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Eq. (1) can be solved at any z position. For the inverse case
where z < zn, the solution proposed by Monde [5] in the
form presented in [4] is given by Eq. (4a). If z > zn the prob-
lem changes from an IHCP to a direct conduction problem
and the solution is given by Eq. (4b).
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In Eq. (4a) GðnÞj;k is a function of z which satisfies the series
given by Eq. (5) when coefficients of like powers of s are
equated.
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If we have measurements at two points in the solid, z = z1

and z = z2 then we wish to find the thermal diffusivity, a,
such that it minimizes Eq. (6) for a specified surface, z.
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XN time
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T1(z) is calculated from Eq. (4) with n = 1 and T2(z) with
n = 2. The sensitivity of the estimate of a to the position
of z will be discussed below. Ntime is the number of discrete
points in time where the solution is evaluated. Note that in
reference [3] the function F(a) was made an integral of time
rather than the summation over several points in time as in
Eq. (6). The summation is more appropriate for the present
formulation since for each point in time the solution is
evaluated independently [4].

Differentiating Eq. (6) with respect to diffusivity, a, we
obtain Eq. (7) for the minimum.
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Differentiating Eq. (4) with respect to a, we obtain Eq. (8).
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In Eq. (8a) the coefficients, Wj,k (k=�1,Nk) are obtained by
equating coefficients of like powers of s in Eq. (9).
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Fig. 1. Effect of location of calculation plane on estimate of thermal
diffusivity.
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Fig. 2. Effect of time range on calculated thermal diffusivity. (a) boundary
condition at surface and (b) calculated thermal diffusivity.
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Making use of Eq. (8), Eq. (7) can be solved quite easily
numerically to obtain the diffusivity, a, in a similar manner
to [3] by the bisection method or some other search meth-
od. For most cases, there tends to be only one positive root
for Eq. (7). Also generally, a negative value of dF(a)/da

means the present estimate of a is too low and a positive
value means a is too high. It should be noted however, that
if the data contains strong positive and negative fluctua-
tions it might be possible for Eq. (7) to have more than
one root. Therefore it is important to confirm that the final
estimated diffusivity does bring about a good match by cal-
culating the temperature at z2 based on the readings at z1

and the semi-infinite boundary. This can be done using
Eq. (4b). Such numerical problems are less likely to arise
if temperatures either increase or decrease monotonically.

3. Estimating other thermal properties

Noting Eqs. (4a) and (4b), one may wonder what the
advantage is of including the inverse solution, Eq. (4a),
since the direct solution alone should be sufficient. The
inverse solution has the merit that it also gives us the heat
flux divided by thermal conductivity at z = 0. Therefore, if
in an experiment, the heat flux is measured, for example by
measuring power to an electrical heater, this extra informa-
tion can be used to determine the thermal conductivity in
addition to the diffusivity [3]. Moreover, if the density is
known, then the definition of thermal diffusivity will give
us the specific heat capacity.

4. Results

We consider some computer-generated data to establish
the mathematical accuracy of the above procedure. To
make the example of practical interest, we select an insu-
lated carbon steel rod L = 50 mm exposed at one end to
different heat flux boundary conditions. Sensors are posi-
tioned at 2 mm and 5 mm from the surface. Data is gener-
ated using analytical solutions given in [1]. A random
fluctuation taken from the Gaussian Normal distribution
(1.96r = 0.1 K) is added to each reading to simulate the
effect of noise in the data. Three different heat flux bound-
ary conditions are considered, a constant heat flux, a sinu-
soidal heat flux and a square wave. To produce a
reasonable temperature gradient in the solid during the
simulation the peak heat flux in each case is set at 100 or
200 kW/m2. The time period, s, of the oscillating cases is
greater than 3 s (as/z2

2 >1.1), which is more than large
enough to ensure the oscillations are detected at both
depths.

Fig. 1 shows the effect of changing z in Eq. (7). If z P z2

then the formulation is a direct heat conduction problem
and Eq. (4b) is used for both depths. If however, z > z1

the inverse heat conduction result is used. Of the three
cases in Fig. 1, the constant heat flux result is the most
accurate and the square-wave case shows the greatest
departure from the true value for thermal diffusivity.
Regardless of z position, all results are within plus or minus
1% of the exact result. Thus the procedure is not greatly
sensitive to type of boundary or to the choice of the calcu-
lation plane position. Having said this, it is not desirable
that z be too much larger than z2 since the calculated result
tends to vanish with depth into the solid. Possibly either
z = z1 or z = z2 may be good choices since the measured
values for T1(z1) or T2(z2) can be substituted directly into
Eq. (7) reducing the required calculation effort. As men-
tioned above, z = 0 is a useful choice for the calculation
plane position when the heat flux is known and one also
wishes to determine the thermal conductivity.
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All results in Fig. 1 were calculated using 600 data
points from at/L2 = 0 to at/L2 = 0.1. Fig. 2 shows the effect
of changing the time range used to calculate a. For each
point in Fig. 2(b), data are used from 0 to at/L2 to calculate
a. In Fig. 2(a) the boundary condition at the surface used
to produce the temperature change is shown. Note that
the present method is not modified in any way to suit the
different heat flux boundary conditions, but simply the
coefficients in Eq. (1d) change to fit the temperature data.

Fig. 2 shows that the accuracy of the method diminishes
if a few data points over a short time (at/L2 < 0.01) are used
to calculate the diffusivity. As in Fig. 1, the constant heat
flux case is better than the oscillating cases. When at/L2

approaches 0.1 the accuracy of all three cases falls within
the range of plus or minus 1%. Therefore, consistent with
[3] the present results demonstrate that it is better to use
close to the full time range for which the solid may be
considered semi-infinite to estimate the thermal diffusivity.

5. Conclusion

By incorporating the procedures suggested by Wood-
field et al. [4] into the method by Monde and Mitsutake
[3], it is possible to calculate accurately the thermal diffusiv-
ity for an arbitrary fluctuating boundary condition. The
procedure was demonstrated using computer-generated
data for a surface heat flux that varies as a sine wave or
a square wave in time. Both direct and inverse solutions
gave a similar accuracy for the cases considered.
Acknowledgement

Support from ‘Grant-in-Aid for Scientific Research (C)
17560189, 2005’ is gratefully acknowledged.
References

[1] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, second ed.,
Oxford University Press, Oxford, 2003, p. 82.

[2] F. Cernuschi, P.G. Bison, A. Figari, S. Marinetti, E. Grinzato,
Thermal diffusivity measurements by photothermal and thermographic
techniques, Int. J. Thermophys. 25 (2004) 439–457.

[3] M. Monde, Y. Mitsutake, A new estimation method of thermal
diffusivity using analytical inverse solution for one-dimensional heat
conduction, Int. J. Heat Mass Transfer 44 (2001) 3169–3177.

[4] P.L. Woodfield, M. Monde, Y. Mitsutake, Improved analytical
solution for inverse heat conduction problems on thermally thick
and semi-infinite solids, Int. J. Heat Mass Transfer 49 (2006) 2864–
2876.

[5] M. Monde, Analytical method in inverse heat transfer problem using
Laplace transform technique, Int. J. Heat Mass Transfer 43 (2000)
3965–3975.


	On estimating thermal diffusivity using analytical inverse solution for unsteady one-dimensional heat conduction
	Introduction
	Formulation
	Estimating other thermal properties
	Results
	Conclusion
	Acknowledgement
	References


